Skip to main content
This page provides comprehensive documentation for all available node types

Database nodes

TuringDB Query

pic1
Sends a query to a running TuringDB instance. Parameters:
  • Host (string): TuringDB instance host
  • Instance Id (string): TuringDB instance ID from Database instances section
  • Graph Name (string): Name of the graph to query
  • API Token (string): TuringDB API token from account settings
  • Input Field (string): Field containing query string
  • Output Field (string): Field where query result will be stored
Use Case: Execute queries against TuringDB graph database instances.

TuringDB Write

pic2
Submits new nodes/edges for creation in a TuringDB graph. Parameters:
  • Host (string): TuringDB instance host
  • Instance Id (string): TuringDB instance ID from Database instances section
  • Graph Name (string): Name of the graph to modify
  • API Token (string): TuringDB API token from account settings
  • Entities Field (string): Field containing entities to add
Use Case: Add new nodes and relationships to TuringDB graph databases.

Core nodes

Merge (Merge fields)

pic3
Merges all incoming JSON data into one. Parameters: None Use Case: Combine data from multiple sources or workflow branches.

Merge Entities

pic4
Merges multiple graph entities together using their labels as identifier. Parameters:
  • Input Field (string): Field containing entities to merge
  • Output Field (string): Field for merged entities
Use Case: Consolidate duplicate entities in knowledge graphs.

Send email

pic5
Send emails using SendGrid API. Parameters:
  • Sendgrid Api Key (string): SendGrid API key from app.sendgrid.com
  • From Email (string): Sender email address
  • To Emails (array): List of recipient email addresses
  • Subject (string): Email subject
  • Cc Email (string, optional): Carbon copy recipient
  • Bcc Email (string, optional): Blind carbon copy recipient
  • Input Field (string): Field containing email content
  • Output Field (string): Field to store response status
Use Case: Send automated emails and notifications from workflows.

Text Input

pic6
Entry-point node to input text into the data flow graph. Parameters:
  • Text Content (text): Text content you want to output
  • Output Field Name (string): Name of the field where this text will be stored
Use Case: Starting point for workflows that need text input from users.

Text Output

pic7
Extract text from previous result and output it in standardized JSON object. Parameters:
  • Input Field Name (string): Name of the field containing the text to display
  • Output Field Name (string): Name of the field where output text will be stored
Use Case: Final output node to display results from your workflow.

AI & Language models

DeepResearch

pic8
Use OpenAI’s deep research models for complex analysis and research tasks. Parameters:
  • Model (select): AI model to use. Options:
    • o3-deep-research
    • o4-mini-deep-research Default: “o4-mini-deep-research”
  • Input Field (string): Field to use as prompt
  • Output Field (string): Field to use as output
  • OpenAI API Key (string): Your OpenAI API key
Use Case: Complex research tasks requiring deep analysis and comprehensive responses.

Generic LLM

pic9
Generic LLM node to query OpenAI, Mistral, or Anthropic models. Parameters:
  • Llm Provider (select): LLM provider. Options:
    • OpenAI
    • Mistral
    • Anthropic Default: “Anthropic”
  • Model (string, optional): Specific model to use for the provider
  • Prompt (string/DataField): The prompt or field to retrieve prompt from
  • System Prompt (string, optional): System prompt for the LLM provider
  • Api Key (string, optional): API key for the LLM provider
  • Temperature (number): Temperature setting
  • Output Format (select): Format of response. Options:
    • markdown
    • json
    • text
    • list Default: “markdown”
  • Output Field (string): Field to store the LLM response
Use Case: General-purpose AI text generation, analysis, and transformation.

Extract Text from PDF

pic10
Description: Extract text and tables from PDF file. Parameters:
  • Input Field Name (string): Field containing PDF content or file path
  • Output Field Name (string): Field where extracted text will be stored
Use Case: Process PDF documents to extract textual content for analysis.

Generate PDF

pic11
Generate PDF from input text. Parameters:
  • Input Type (select): Type of input text. Options:
    • markdown
    • plain_text
  • Input Field (string): Field containing input text
  • Output Field (string): Field to store generated PDF
  • Page Size (string): Page size of PDF
  • Margin (string): Margin around content
Use Case: Convert markdown or plain text into formatted PDF documents.

File storage

S3 List Files

pic12
List files in user’s S3 bucket. Parameters:
  • Filenames (array): Specific filenames to look for
  • Extensions (array): File extensions to filter by
  • Max Item Count (number): Maximum number of files to return
  • Output Field (string): Field to store file list
Use Case: Discover and list files in S3 storage for further processing.

S3 Load File

pic13
Load content of a file from user’s S3 bucket and store it into JSON data. Parameters:
  • File Key (string/DataField): File path/key in S3 bucket
  • File Type (select): Type of file. Options:
    • image
    • video
    • audio
    • text
    • pdf
    • markdown
    • html
    • csv
    • excel
    • other Default: “text”
  • Output Field (string): Field to store loaded content
Use Case: Load various file types from S3 for processing in workflows.

S3 Upload File

pic14
Create and upload a file to user’s S3 bucket. Parameters:
  • User ID (string): User identifier for S3 bucket access
  • File Key/Name (string): Desired file path/key in S3
  • Input Field Name (string): Field containing content to upload
Use Case: Store generated content or processed data in S3 storage.

API Integrations

Financial Data REST API

pic15
Call FinancialData Rest API. Parameters:
  • Endpoint (select): API endpoint. Options:
    • stock_symbols
    • international_stock_symbols
    • etf_symbols
    • mutual_fund_symbols
    • stock_prices
    • etf_prices Default: “stock_symbols”
  • Api Key (string): API key
  • Identifier (string/DataField): Company ticker or ETF
  • Format (select): Output format. Options:
    • json
    • csv
  • Offset (number): Record subset position.
  • Output Field (string): Field to store response. Default: “response”
Use Case: Access financial data including stock symbols, prices, and ETF information.

Polygon REST API

pic16
Call the Polygon REST API for financial market data. Parameters:
  • Endpoint Type (select): Polygon endpoint. Options
    • tickers
    • market_status
    • aggregates
    • trades
    • quotes
    • options
    • indices
    • futures
    • currencies Default: “tickers”
  • Polygon API Key (string): Polygon API key
  • Ticker (string, optional): Ticker symbol
  • Option Ticker (string, optional): Option ticker symbol
  • Futures Ticker (string, optional): Futures ticker symbol
  • Currency Ticker (string, optional): Currency ticker symbol
  • Index Ticker (string, optional): Index ticker symbol
  • Begin (string, optional): Start date (YYYY-MM-DD) or timestamp
  • End (string, optional): End date (YYYY-MM-DD) or timestamp
  • Timespan (select): Time window size. Options: second, minute, hour, day, week, month, quarter, year
  • Multiplier (integer): Timespan multiplier
  • Limit (number): Number of results (0-1000)
  • Output Field (string): Field to store response
Use Case: Access real-time and historical financial market data.

Rest API

pic17
Call a REST API endpoint. Parameters:
  • Base Url (string): Base URL for the API
  • Endpoint (string): API endpoint path
  • Method (select): HTTP method. Options
    • GET
    • POST
    • PUT
    • DELETE Default: “GET”
  • Headers (object): HTTP headers
  • Http Params (object): HTTP query parameters
  • Body (string, optional): Request body for POST/PUT requests
  • Timeout (number): Timeout in seconds
  • Output Field (string): Field to store response
Use Case: Integrate with external APIs and web services.

Graph AI Tools

GML Generator

pic18
Builds GML from Entities JSON schema. Parameters:
  • Input Field Name (Entities) (string): Field containing entities data
  • Output Field Name (string): Field where generated GML will be stored
Use Case: Convert structured entity data into Graph Modeling Language format for visualization.

Mistral Entity Extractor

pic19
Call Mistral API to generate JSON containing entities and relationships extracted from input text. Parameters:
  • Input Field Name (string): Field containing text for entity extraction. Default: “content”
  • Output Field Name (string): Field where extracted entities will be stored. Default: “entities”
Use Case: Extract structured entities and relationships from unstructured text for knowledge graph creation.

Mistral Graph Explainer

pic20
Call Mistral API to generate Markdown text explaining the overall structure of input GML-like text. Parameters:
  • Input Field Name (string): Field containing GML graph data to explain
  • Output Field Name (string): Field where human-readable graph explanation will be stored
Use Case: Generate human-readable explanations of graph structures for documentation or analysis.

Text to Cypher LLM

pic21
Text to Cypher conversion LLM node. Parameters:
  • Llm Provider (select): LLM service to use. Options
    • OpenAI
    • Anthropic
    • Mistral Default: “OpenAI”
  • Model (string, optional): Specific model name
  • Api Key (string): API key
  • Input Field (string): Field containing natural language query
  • Output Field (string): Field where generated Cypher query will be stored
  • Node Labels (array): Available node types in the graph
  • Relationship Types (array): Available relationship types in the graph
  • Property Keys (array): Common node properties in the graph
  • Database Description (string, optional): High-level description of your graph database
Use Case: Convert natural language queries into Cypher queries for graph databases.

Experimental

For Each

pic22
Loops over elements in a list or a dict. Parameters:
  • Collection Field (string): Field containing collection to iterate over
  • Current Field (string): Field name for current item in loop
Use Case: Process collections of data items in batch operations.

If statement

pic23
Evaluates the condition and follows the true/false branch accordingly. Parameters:
  • Left-Hand Side Field (string): Field containing left-hand side operand
  • Right-Hand Side Field (string): Field containing right-hand side operand
  • Operator (select): Comparison operator. Options: ==!=>>=<<=== != > >= < <=
  • Execution Count Limit (integer): Maximum execution count
Use Case: Implement conditional logic and branching in workflows.
I